An Agent-based Approach to Chinese Named Entity Recognition
نویسندگان
چکیده
Chinese NE (Named Entity) recognition is a difficult problem because of the uncertainty in word segmentation and flexibility in language structure. This paper proposes the use of a rationality model in a multi-agent framework to tackle this problem. We employ a greedy strategy and use the NE rationality model to evaluate and detect all possible NEs in the text. We then treat the process of selecting the best possible NEs as a multi-agent negotiation problem. The resulting system is robust and is able to handle different types of NE effectively. Our test on the MET-2 test corpus indicates that our system is able to achieve high F1 values of above 92% on all NE types.
منابع مشابه
A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملCorrecting Word Segmentation and Part-of-speech Tagging Errors for Chinese Named Entity Recognition
In the exploration of Chinese named entity recognition for a specific domain, the authors found that the errors caused during word segmentation and part-ofspeech (POS) tagging have obstructed the improvement of the recognition performance. In order to further enhance recognition recall and precision, the authors propose an error correction approach for Chinese named entity recognition. In the e...
متن کامل